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Abstract

A method of calculating the fuzzy response of
a system is presented. This method, called the

Optimized Vertex Method (OVM), is based upon the

vertex method but requires considerably fewer function
evaluations. The method is demonstrated by

calculating the response membership function of strain-
energy release rate for a bonded joint with a crack. The

possibility of failure of the bonded joint was determined
over a range of loads. After completing the possibilistic

analysis, the possibilistic (fuzzy) membership functions
were transformed to probability density functions and

the probability of failure of the bonded joint was

calculated. This approach is called a possibility-based
hybrid reliability assessment, l'he possibility and

probability of failure are presented and compared to a
Monte Carlo Simulation (MCS) of the bonded joint.

Introduction

in the future, the consideration of variability in

design parameters and the calculation of reliability will
be required for aerospace structures. In the final stages

of design it is clear that the evaluation of system
reliability will require full probabilistic analysis.

However, probabilistic analyses are computationally
expensive and there may not be enough information to

use probabilistic methods to assess reliability early in
the design cycle. Hence, methods that require less
information and yet can provide a measure of reliability

are attractive for the early stages of design.
Possibility theory, a variant of fuzzy set

theory, is one method that does not require detailed
statistical data and can be used to assess reliability (Ref.

1,2). The vertex method (Ref. 3) has commonly been
used to calculate the fuzzy response of a system. A

disadvantage of the vertex method is that the number of
function evaluations needed increases by the number of

alpha-cuts raised to the power of the number random
variables, where the number of alpha-cuts refers to the

levels of possibility where calculations are performed.

Without computational efficiency possibility theory
becomes less attractive than probabilistic methods for

assessing reliability.
Possibility theory has also been shown to be

more conservative than probability for parallel systems

or for single failure modes (Ref. 4,5). While a
conservative solution is desired for the evaluation of

structures, overly conservative designs generally carry a

weight penalty. A solution that reduces the

conservatism of possibility is also desirable.
This paper presents a modified vertex method

that uses gradient-based optimization and is
computationally efficient. The method is demonstrated

for a simple function and then applied to a more
complex structural problem. The structural example
that is used to demonstrate the method is the bonded

joint investigated earlier by Stroud et al. (Ref. 6). In

Reference 6 the authors noted that the possibilistic
analysis was conservative compared to the probabilistic

analysis. To address the problem of the conservative
nature of possibility theory, possibilistic membership
functions are transformed to probability' density'

functions for the calculation of the probability of
failure.
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Calculating Possibility

In Figure I an example of a possibilistic

membership function is presented. A possibilistic
membership function is sometimes called a fuzzy

number or a fuzzy variable. One method for evaluating
fuzzy relationships is the vertex method proposed by

Dong and Shah (Ref. 3). In the vertex method, rather
than discretizing the variable domain, the membership
domain is discretized. The disretization of the

membership domain is accomplished by dividing the
membership domain into a series of equally spaced

cuts, called c_-cuts, where _ represents possibility. For
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each a-cut the upper and lower value of the fuzzy
variable is selected.
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Figure I. Membership function for a fuzzy number

For the membership function shown in Figure

2 at c_ = 0 the upper and lower bounds are the values e,

and a,. Suppose that Z =fiX,Y), wheref(X,Y) is a fuzzy
operation and X and Y are fuzzy numbers described by
a membership functions similar to the one shown in

Figure 2. The fuzzy numbers X and Y are described by

their membership functions, ct(x) and ct0v),

respectively.
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Figure 2. Discretized membership function for vertex

method (ct=0, 0.5, 1.0)

The bounds on the membership functions for X and Y

at ct = 0.0, 0.5 and 1.0 are (a_,ex) and (a,,ev), (bx, dx) and
(b,_d,,), and c, and ce, respectively. The output
membership function for Z is given by the maximum
and minimum values off(X,Y) within the bounds of X

and Y at each a-cut interval. Hence, for ct = 0 using
the vertex method, the upper bound of Z is

max{f(a_,ay), f(a_,e_), f(ex, a,), f(e,,,e,,)} and the lower

bound is min{f(ax, ar). flax, eft, f(ex, av), f(ex, e_)}. This is
repeated for the correspond-ing bounding values at each
a-cut level.

Consider the fuzzy numbers X and Y shown in
Figures 3 and 4. These two fuzzy numbers can be

defined over the real field using membership functions.

The membership functions for X and Y are

-1,
O_(X) = - X,

0,
1 <x < _,,}

2<x<

otherwise.

(i)

and

a(y) = I4 - .),

[0,
l<y<3' t

3<_y<4,

otherwise.

(2)
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Figure 3. Membership function for X

X = co(x)

I I

4 5

1.00 = ,

0.75

a0') 0.50

0.25

0.00

0 1 2 3 4

Y

Figure 4. Membership function for Y

Suppose that Z = Y - X. The membership function Z

can be calculated by performing the operation for the

bounds defined by a set of a-cuts. For example let us
use a-cuts at ot = 0.0, 0.5 and !.0. On ct = 0.0 the

bounds on the membership functions ct(x) and ctty) are

(1,3) and (I,4), respectively. To calculate Z = Y - X on
t_ = 0.0 all combinations of the bounds must be

considered. Thus the set that defines the membership

function of co(z) for ct=0 is [min{(I-l),(l-3),(4-1),(4-
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3)},max{((1-1),(I-3),(4-1),(4-3)} I. This yields the set

[-2,3] for the response Z for ct:-() The procedure is

repeated for a=0.5. The bounds at _=0.5 are (2,3.5) for

a(y) and (I.5,2.5) for (x(x). Thus the set that defines the

response membership function Z for a=0.5 is [rain{(2-
1.5),(2-2.5),(3.5-1.5),(3.5-2.5)} ,max {(2-1.5),(2-
2.5),(3.5-1.5),(3.5-2.5)}] = [-0.5,21. Because the

membership functions a(x) and _(v) are single valued

at a = 1.0 the response membership function is single
valued as well. Hence, the most likely value of Z
occurs at y =1.0. The final membership function for Z

is shown in Figure 5.

1.00

0.75

a(z) 0.50

0.25

0.00

Figure 5.

Z = Y-X = a(:)

-4 -3 -2 -1 0 1 2 3

Membership function for Z=Y-X.

Dong and Shah (Ref 3) noted that the

maximum or minimum value of the response function
might not occur at the bounds of the interval. The
extremum of the function within the interval must be

included or an incorrect result will be obtained. For

example consider the fuzzy function Z = XY(4-Y).

Where X and Y are shown in Figures 3 and 4 and are

described by Equations 1 and 2, respectively. The
function Z has a maximum value that occurs when y=2
and x takes on its maximum value. Thus to evaluate the

membership function of Z the value of), corresponding
to the extreme value of Z must be considered, as well as

the bounds of each a-cut. In Figure 6 the membership
function of Z is shown. The solid line in Figure 6 is the
membership function that is obtained when the internal

extrema is considered. The dashed line in the figure is
the result that would have been obtained if the internal

extrema had not been considered. To obtain the correct

result the global extrema must be accounted for.

One method for handling extremum interior to
the intervals on each a-cut woukl be to use the internal

points from the a-cut levels above the current a-cut

level. For example consider two membership functions
discretized as the membership function shown in Figure

2. The calculation of possibility at a=0.0 requires the
evaluation of all the possible combinations of points
from all a-cut levels. The combinations for each a-cut
are shown in Table I. In Table 1 the closed circular
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ct(z) 0.50

0.25

0.00

Figure 6.

.... Vertex
-- Vertex with extrema

• Optimized Vertex Method

Z = XY(4 - Y) = et(z)

- I

0 3 6 9 12 15

Membership function for Z = XY(4-Y)

symbols are the points needed for the evaluation of the

response at et=0.0, the closed square symbols are the

points needed at a=0.5, and the open triangular symbol

is the point needed at c_=l.O. The minimum and

maximum of the system response for these points
would define the response membership function at each

a-cut level. In general, for any number of cx-cuts, the

function is evaluated for all the possible combinations

of the interior points from all the a-cuts. Then, the

evaluation points are partitioned for each a-cut level,
and the maximum and minimum values of the response
are selected.

For convex membership functions that are

single valued at o_=1.0_ the number of function

evaluations required increases with

Table 1. Partitioning of the evaluation points to obtain
the response membership function

ax b_ cx dx e_

a.r • • • • •

b r • OI 01 10 •

c,, • on Ol_ on •

d_,, • • nm • n on •

el, • • • •

o, et : 0.0; n, a = 0.5; A a = 1.0

the number of a-cuts and the number of variables (see

Figure 7). For m variables and n a-cuts this solution
requires m 2"-I function evaluations. The number of

function evaluations can become unmanageable for
problems with large numbers of random variables or for
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functions that change rapidly over the values of the
fuzzy variables.

._L__n.......................... (_: I.o

-_ N = (2n-I)"

=2 .............

= 1 ._.0

.If

Figure 7. Alpha-cuts for vertex method including

interior points

Furthermore, if an insufficient number of cuts

are used the internal extremum might still be missed.
Hence, a method that reduces the number of function
evaluations and ensures that the solution contains the
extremum of the function within the bounds of the

fuzzy variables is desired. Such a method is described
below.

Optimized Vertex Method

To reduce the number of calculations required

to perform a possibilistic analysis the maximum and
minimum values of the response function must be

determined over the range of the fuzzy variables. This
is accomplished by finding the extremum of the

function within the interval of fuzzy variables defined

by an a-cut. In general, for complex problems, no
closed form solution is available for the system

response and the extremum cannot be solved for

directly. However, this problem is an unconstrained
optimization problem with bounded input parameters.
A problem of this type can be solved using a gradient-

based optimization method. In this paper the BFGS
algorithm is used (Refs. 7-10).

The procedure followed in the Optimized
Vertex Method (OVM) is shown in Figure 8. The

upper and lower bounds on the random variables are

determined from the membership functions at ct = 0.
The initial values of the random variables are set to

their most likely values (the values that correspond to a
possibility of unity). The bounds and the initial values

are used as the input to the gradient-based optimization
routine. Two optimizations are conducted. First, the

system response is maximized. Then, the system
response is minimized. The minimum and maximum

system response correspond to the

_5

X

Z

Start

Select Bounds

,-.............*t Initialize Variables
/

t

Find

Minimum

Find

Maximum

Store Variables

Yes

End

Figure 8. Procedure for optimized vertex method

upper and lower bounds of the response membership
function, respectively. The values of the random

variables that correspond to the minimum and
maximum are stored for use in the next optimization.
The bounds on the random variables are determined for

the next a-cut. On the next pass through the
optimization routine the initial values for the random
variables are set to the values obtained from the

previous optimization. When those results are outside
the bounds of the random variables, the closest

bounding value is selected. The minimum and

maximum responses are then obtained for next a-cut.

The procedure is repeated until all a-cuts have been
evaluated.

Consider the fuzzy numbers X and Y
(Equations l and 2 and Figures 3 and 4, respectively)

and the fuzzy function Z = XY(4-Y) once more.
Applying the OVM to solve for the response

membership function Z yields the open circular
symbols shown in Figure 6. Note that OVM recovers
the exact response membership function at the discrete
ct-cuts.
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Possibility Based Hybrid Reliability

1.0

In References 4-6 it was noted that for single
failure modes or for parallel systems the possibility of ct(x)

failure is conservative with respect to probability of
failure, in Reference 6 the authors showed that if the

fuzzy membership function for a random variable is
based on the mean and standard deviation of a

probabilistic random variable, the possibility of failure 0.0

is one when the probability of failure is fifty-percent.

Possibility effectively implies a factor of safety of two

for the analysis. In the early stages of design this
conservatism would certainly ensure performance, but
could adversely effect the optimization of the weight of
the structure.

In this paper a Bayesian approach was adopted
to reduce the conservatism of possibility theory. In

general when a Bayesian approach is adopted, expert
knowledge is used to construct the probability density
functions for the probabilistic analysis. The selection

of the type of the distribution, mean value, and standard

deviation for a quantity is objective, rather than
subjective. In the possibility-based approach to

reliability the fuzzy response of the system is used to
create the probability density functions for the

probabilistic analysis. First, the membership function
of the system response is detennined using OVM. where
Then, the fuzzy membership function for the system

response is transformed into a probability density
function. A simple integration of is performed to obtain

the probability of failure.
A triangular fuzzy membership function is

shown in Figure 9. The equation lor this membership
function is

"x -a
a<X<_C,

c-a'

b-x
c_)f<_b,

b-c'

O, othel_vise.

(3)a(x)=

Equation 3 can be transformed to a probability density

function (PDF) by scaling the fimction by the area
under the function.

i
a c h

Figure 9. Triangular membership function with upper

and lower bounds and most likely value

The PDF created from

membership function is

K(x-a)

(c-a)
K(b-x)

p(x)= i

(b - c)
o,

the transformed triangular

£l<_X<_C,

c<x<b,

otherwise,

(4)

2
K - (5)

(b-a)

The cumulative distribution is obtained by integrating
Equation 4. The triangular PDF has a cumulative

distribution that is given by

O_

(x-afl
(b-a)(c-a) '

(c-a) x(2b-x)-c(2b-c)
--+

(b-a) (b - a)(b - c)
I,

x<_tl

a<_x<c

c<_x <_

x>b.

(6)

Given two fuzzy numbers, X and Y, the probability that

X is greater than Y is calculated by transforming X and
Y into PDFs and evaluating the integral expression

(Figure 10)

X>_)'

pf = J" j'p(x)p(y)dxdy. (7)
--oC --_
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Equation 7 can be evaluated directly or determined

numerically. In general this procedure is not limited to
triangular membership functions an can be applied to

any piece-wise continuous fuzzy membership function.

P r = P( X >_Y) = I'. Pr(x)px(x)dx

Pr(x)= P()" _x) = _xpr(y)dy

_) Y

x

Figure 10. Probability ofX > Y

Bonded Joint

Next, OVM is applied to calculate the
possibility of failure for the problem of a bonded joint.
This problem was investigated earlier by Stroud, et al.

(Ref. 6). In Reference 6 two failure modes were

considered, failure in the strap due to yielding and
failure in the adhesive due to crack growth. In the

current analysis only failure in the adhesive is
considered. First, OVM is used to determine the

system response. Linear and nonlinear finite-element
analyses of the joint are used to obtain the response
membership function for the total strain-energy release

rate of a crack in the adhesive of the joint. This
membership function is compared with the fracture

toughness of the adhesive, which is also random. The
possibility of failure, the possibility that the total strain-

energy release rate is greater than the fracture

toughness, is determined. Then the membm_hip
functions for total strain-energy release rate and
fracture toughness are transformed into probability-

density functions and the probability of failure is
evaluated by integrating Equation 7 explicitly. The
results obtained are compared to the results obtained in
Reference 6.

Analysis

A bonded joint with a crack in the bond-line is

shown in Figure li. A probabilistic and possibilistic
analysis of this joint was conducted Stroud, et al (Ref.
6). Determining failure in the adhesive is

accomplished by calculating the total strain-energy
release rate for the crack in the adhesive of the bonded

joint. Finite-element analysis is used to obtain the

forces and displacements ahead of and behind the crack

tip and the total strain-energy release rate is calculated
using the virtual crack closure technique (Ref. 6,11).
Failure is said to have occurred when the total strain-

energy release rate has exceeded the fracture toughness
of the

_v,v /2 b[

_ Lap , Crack_,___Lj

l 'A st p LA h0s,vo
ta _ 11

Figure I !. Bonded lap joint

adhesive. The response of the system is the total strain-

energy release rate.
Table 2 contains the parameters that define the

bonded joint configuration and the randomness of the
variables. In Table 2 the yield stress and the critical

strain-energy release rate (fracture toughness) are
shown as random variables. While these limit criteria,

fracture toughness and yield stress, are random they are
not needed for the determination of the system

response. Hence, only eight random variables are used
in the evaluation of the system response.

The possibilistic analysis of the joint in
Reference 6 was conducted using the vertex method for

tx-cuts at ct=0.0, 0.5 and 1.0 for eight random input

variables, in Reference 6 response membership
functions were obtained for the maximum stress in the

strap of the joint and the total strain-energy release rate.
The analysis required 390,625 finite-element analyses

of the model to determine each response membership
functions. Both nonlinear and linear analyses were
conducted.

For this paper the bonded joint problem was

solved using OVM and the optimization step was
implemented using DOT (Ref. 12). Alpha-cuts were

made at ct=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. A FORTRAN

code was developed and was linked to an ABAQUS
finite-element model of the bonded joint. This code

was also linked to the post processing and optimization
routines. The random variables were initially set to

their most likely values and the dual optimization at
ct=0.0 was conducted. After the first ct-cut, the initial
values of the random variables were selected based on

previous optimizations results. The process was

repeated for the remainder of the a-cuts. Both linear
and geometrically nonlinear analyses were conducted.

6
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Table 2. Values of quantities lllat define the single lap shear joint

Variable

Thickness, strap - in.

Thickness, lap - in.

Length, strap - in.

Length, lap - in.

Thickness, adhesive - in.

Length, crack - in.

Symbol

Probabilistic Analysis

(normal distributions)

II

t2

Ii

12

ta

C

Mean

Standard

Deviation

0.005

0.005

0

0.16

0.0005

0.08

Possibilistic Analysis

o_=0

Lower

Bound

0.125

0.125

12.0

10.0

0.0050

4.00

0.11

0.11

12

9.52

0.0035

3.76

Upper
Bound

0.14

0.14

12

10.48

0.0065

4.24

Modulus, metallic adherends - psi

Poisson's ratio, metallic ends

Modulus, adhesive - psi

Poisson's ratio, adhesive

Fracture Toughness - in. lb'in. 2

Yield stress 2024 T3 - psi

Crack Growth Increment - in.

Em

Vm

E_

Gc

_yield

Ac

10,500,000

0.3125

336,000

0.40

5.50

44,000

0.00125

105,000

0

16,800

0

0.66

880

0

10,185,000

0.3125

285,600

0.4

3.52

41,360

0.00125

10,815,000

0.3125

386,400

0.4

7.48

46,640

0.00125

In Figures 12 and 13 the response membership
functions for the total strain-energy release rate are
compared to the same result obtained in Reference 6.
Figure 12 shows the results for the linear analysis and
Figure 13 shows the result for the nonlinear analysis.
To obtain the response membership functions 554 and
514 finite-element simulations were needed for the

linear and nonlinear analyses, respectively.

100

Optimized Vertex Method (_,1)

Vertex Method (390625)

080

._, 060

0.40

020

I O0

080

,060

040

020

Optimized Vertex Method (514)

Vertex Method (390625)

000 _'

0.00 I O0 2 O0 3.00

Strain Ener_, Release Rate. in-lbhn

Figure 13. Response membership function from
nonlinear analysis

0.00 o ,--,

000 II)O 2 O0 300

Strain Energy Release l, are. in-lbiin

Figure 12. Response membership function from linear
analysis

The sensitivity of the total strain-energy
release rate to changes in the random variables is shown
in Figures 14 and 15. The derivative values are
obtained directly from the optimization routine used in

the calculation of the output membership function.
They are obtained from a central difference calculation
about the most likely value of the system response.
They could also be shown for each point on the bounds
of the response membership function. In this instance
the sensitivity is defined as the derivative of the
response with respect to the random variable multiplied
by the standard deviation of that random variable. Note
that these sensitivities can be used to determine the

relative importance of modeling the randomness of the
input parameters. From figures 14 and 15 it is clear that

7
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some random variables have little effect on the system

response. Design sensitivities are an added benefit of

using OVM.

Crack Length •

Adhesive Modulus

Strap Modulus El

Lap Modulus

Adhesive Thickness

Strap Thickness

Lap Thickness

Lap Length
i i i i J i L i , L i i h i I _ a _ a

000 005 010 0.15 020

Sensitivity

Figure 14. Design sensitivities obtained from the
optimized vertex calculations for the linear analysis

Crack Length _

Adhesive Modulus

Strap Modulus

Lap Modulus

Adhesive Thickness

Strap Thickness

Lap Thickness

Lap Length

000 0.05 0.10 0.15 0.20

Sensitivity

Figure 15. Design sensitivities obtained from the
optimized vertex calculations for the nonlinear analysis

The possibility of failure is determined by

determining the possibility that the total strain-energy
release rate is greater than the fracture toughness of the
adhesive, Gx>G¢. In this case both the GT and Gc are

fuzzy numbers. To demonstrate the calculation of the
possibility of failure, consider the two fuzzy numbers

shown in Figure 16. The possibility that X >Y is the
point where the two membership functions cross. This

point is shown as ct in Figure t6. Once the most likely
value of X is greater than the most likely value of Y,

the possibility that X is greater than Y is unity. The
probability of failure for the bonded joint was also
calculated using the hybrid reliability methods

discussed previously. The possibility and probability of
failure for linear and nonlinear analysis of the bonded

joint are shown for various loads in Figures 17 and 18,
respectively. In these figures the probability of failure

obtained in Reference 6 is included for comparison.

X

Figure 16. Possibility ofX >Y

1.00

0.75

0.50

0.25

Hybrid
MCS

-- PossibiliD,
I

/
I

/
I j

/ /

4000 6000

Load. F, Ib

0.00 n , i

0 2000 8000 10000

Figure 17. Possibility and probability of failure

obtained from linear analysis

o
m

.c

1.00

0.75

0.50

0.25

0.00

/ MCS
/ Possibility

/
I

/

I I I !

0 2000 4000 6000 8000 10000

Load. F, Ib

Figure 18. Possibility and probability of failure
obtained from nonlinear analysis.

Discussion

The optimized vertex method (OVM)
significantly reduces the number of calculations

required to obtain the system response. However, the

maximum and minimum response of the bonded joint

on each a-cut corresponded to the bounds of the

random variables. This means that for the bonded joint

8
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problem there were no internal extrema that needed to
be considered. If this could have been determined

initially, only bounding values of the random variables

would have been needed to obtain the system response
membership function. The number of function
evaluations would have been reduced to 256 (2") for

each R-cut. Conversely, there could have been

multiple extrema within the bounds of the random
variables. In this case the gradient-based optimizer

could have been trapped at a local minimum or
maximum of the response and obtained an incorrect

solution. Since the response was calculated using both

the vertex and optimized vertex, the solution obtained
was the correct one, but the underlying problem with
optimization was not addressed. To avoid being

trapped in local extrema a Tunneling method (Ref. 13)
could be adopted for the optimization step to obtain the

global minimum or maximum of the response.
However, the Tunneling method is not available in
DOT.

As was shown in Reference 6, the possibility
of failure for the bonded joint was conservative in

comparison to the probability of failure (Figure 17 and
18). The possibility based hybrid approach obtained

close correlation to the reliability solution from MCS.
This result is somewhat artificial as the membership
functions were constructed based on the mean and

standard deviation used for probability density

functions given in Reference 6. However, the fact that
a good approximation was obtained may be useful for

cases where a probabilistic analysis is not possible due
to either lack of information or when time is critical.

The OVM approach may be appropriate for the early

stages of design while a full reliability assessment using
MCS should be conducted at the end of the design

process.

Concluding Remarks

A method of calculating the fuzzy response of

a system is presented. This method, called the
Optimized Vertex Method (OVM), is based upon the
vertex method but requires much fewer function

evaluations. Improved efficiency is obtained through

the use of optimization to find the minimum and
maximum of the system response on a defined interval
of the random variables.

The method is validated for a simple
mathematical function and demonstrated by calculating

the response membership function of strain-energy
release rate for a bonded joint with a crack. Eight
random variables were considered. The response

membership functions obtained from OVM reproduced

the values obtained using the vertex method in less than
1,000 simulations compared to more than 390,000

required for the vertex method. The possibility of

failure of the bonded joint was determined over a range
of loads.

After completing the possibilistic analysis, the
possibilistic (fuzzy) membership functions were

transformed to probability density functions. Using the
transformed membership functions the probability of

failure of the bonded joint was calculated. This

approach is called a possibility based hybrid reliability
assessment. The possibility and probability of failure
are presented and compared to a Monte Carlo

Simulation (MCS) of the bonded joint. The possibility

based-hybrid reliability method yielded results vet3'
close to those obtained from the MCS.
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